A characterization of partial directed line graphs

نویسندگان

  • Nicola Apollonio
  • Paolo Giulio Franciosa
چکیده

Can a directed graph be completed to a directed line graph? If possible, how many arcs must be added? In this paper we address the above questions characterizing partial directed line (PDL) graphs, i.e., partial subgraph of directed line graphs.We show that for such class of graphs a forbidden configuration criterion and a Krausz’s like theorem are equivalent characterizations. Furthermore, the latter leads to a recognition algorithm that requires O(m) worst case time, where m is the number of arcs in the graph. Given a partial line digraph, our characterization allows us to find a minimum completion to a directed line graph within the same time bound. The class of PDL graphs properly contains the class of directed line graphs, characterized in [J. Blazewicz, A. Hertz, D. Kobler, D. de Werra, On some properties of DNA graphs, Discrete Appl. Math. 98(1–2) (1999) 1–19], hence our results generalize those already known for directed line graphs. In the undirected case, we show that finding a minimum line graph edge completion is NP-hard, while the problem of deciding whether or not an undirected graph is a partial graph of a simple line graph is trivial. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden directed minors and Kelly-width

Partial 1-trees are undirected graphs of treewidth at most one. Similarly, partial 1-DAGs are directed graphs of KellyWidth at most two. It is well-known that an undirected graph is a partial 1-tree if and only if it has no K3 minor. In this paper, we generalize this characterization to partial 1-DAGs. We show that partial 1-DAGs are characterized by three forbidden directed minors, K3, N4 and M5.

متن کامل

Line graphs associated to the maximal graph

Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...

متن کامل

SYNOPS - Generation of Partial Languages and Synthesis of Petri Nets

We present the command line tool SYNOPS. It allows the term-based construction of partial languages consisting of different kinds of causal structures representing runs of a concurrent system: labeled directed acyclic graphs (LDAGs), labeled partial orders (LPOs), labeled stratified directed acyclic graphs (LSDAGs) and labeled stratified order structures (LSOs). It implements region based algor...

متن کامل

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 307  شماره 

صفحات  -

تاریخ انتشار 2007